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Abstract—Discriminating between line-of-sight (LOS) and non-
line-of-sight (NLOS) conditions, or LOS identification, is impor-
tant for a variety of purposes in wireless systems, including
localization and channel modeling. LOS identification is espe-
cially challenging in vehicle-to-vehicle (V2V) networks since a
variety of physical effects that occur at different spatial/temporal
scales can affect the presence of LOS. This paper investigates
machine learning techniques for LOS identification in V2V
networks using an extensive set of measurement data and
then develops robust and efficient identification solutions. Our
approach exploits several static and time-varying features of the
channel impulse response (CIR), which are shown to be effective.
Specifically, we develop a fast identification solution that can
be trained by using the power angular spectrum. Moreover,
based on the measurement data, we also compare three different
machine learning methods, i.e., support vector machine, random
forest, and artificial neural network, in terms of their ability to
train and generate the classifier. The results of our experiments
conducted under various V2V environments, which were then
validated using K-fold cross-validation, show that our techniques
can distinguish the LOS/NLOS conditions with an error rate as
low as 1%. In addition, we investigate the impact of different
training and validating strategies on the identification accuracy.

Index Terms—Line-of-sight identification, machine learning,
device-to-device connections, localization, channel modeling
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I. INTRODUCTION

D IFFERENTIATING line-of-sight (LOS) from non-line-
of-sight (NLOS) channels (henceforth simply called LOS

identification) based on real-time measured radio character-
istics is important for a variety of applications in wireless
systems, such as localization [1], [2] and channel modeling.
Many localization systems, such as the Global Positioning
System (GPS) and Cellular 911 Localization, are based on
the measurements of the runtime between anchor nodes with
known location and the agent node whose location has to
be determined. However, there may be obstacles within the
environment that can block the LOS connection between the
nodes (i.e., NLOS situation), thereby introducing a (positive)
bias in the distance estimation [3], [4]. Distinguishing such
channels from LOS channels based on easily measurable
quantities is important to enable developers to either discard
NLOS runtime measurements or reduce their harmful effects
through advanced signal processing [5], [6]. Another important
application of LOS identification is channel modeling since
most channel models [7], e.g., 3GPP [8], COST 2100 [9], use
different channel parameters in LOS and NLOS situations.

LOS identification is especially difficult in device-to-device
connections [10] such as vehicle-to-vehicle (V2V) communi-
cations [11]. V2V propagation channels are typically time-
varying, nonstationary, and show different characteristics un-
der LOS/NLOS conditions [12]–[14]. Due to the mobility of
vehicles and due to the rich-scattering environment, other vehi-
cles or buildings along the street may randomly block or reflect
on the wireless signals. This makes it difficult to predict the
LOS/NLOS condition based only on the type of environment.
Furthermore, the propagation channel characteristics usually
evolve as the vehicles with the transmitter (Tx) and receiver
(Rx) move.

LOS identification is very important, thus, several solutions
have been proposed:

1) Conducting visual inspection by cross-checking video
data and measurement data: In some environments, the
LOS and NLOS conditions occur randomly when cars or
pedestrians block the signal. For example, [15] used a
recording from cameras mounted near the Tx and Rx to
distinguish the LOS and NLOS situations.

2) Designing measurement campaign to distinguish the s-
cenarios inherently: The most direct way of channel
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modeling is to individually measure the channels in the
LOS and NLOS scenarios. For example, [16] measured
the V2V channel in an intersection scenario, in which
the Tx and Rx cars first move in convoy and then
move in different directions at the intersection. Thus, the
measurement campaign inherently separates the LOS and
NLOS environments.

3) Using some characteristic parameters of the propagation
channel to determine whether it is a LOS or NLOS
scenario: For example, [17] used the Rician K-factor to
estimate whether it is a LOS or an NLOS scenario.

Despite the different solutions offered by these LOS identi-
fication techniques, there are still drawbacks to the current
solutions:

1) Although a visual inspection can perform LOS identi-
fication accurately, the process is time-consuming and
exhausting for human observers.

2) Designing the measurement campaigns to inherently pro-
vide LOS or NLOS is difficult because the surrounding
nonstatic objects, e.g., cars, might change the LOS state;
this may happen in an unpredictable manner.

3) Solutions that are based on deterministic thresholds of
channel parameters are usually not accurate enough in
time-varying channels.

Meanwhile, machine learning tools are well suited for
addressing classification problems. As such, applying machine
learning-based techniques to the identification of LOS/NLOS
conditions more promises to provide more accurate results
since ML methods can extract the pattern from multiple
dimensions of channel features. Thus, various such methods
have been investigated in the literature. Ref. [18] uses a support
vector machine (SVM) to identify the LOS/NLOS scenarios,
where the received power, maximum power, rise time, kurtosis,
and delay spread are extracted as the training features. Simi-
larly, [19], [20] train the SVM by using the channel features
mentioned above with the addition of skewness and the fitness
between the measurement data and Rician distribution. Instead
of using SVM, [21] develops an NLOS identification algorithm
by conducting a relevance vector machine (RVM) with similar
training features [18]. Compared to the SVM, the RVM usually
requires a longer training time but can be evaluated faster in
actual implementation. Recently, [22] exploits random forest
(RF) for LOS/NLOS classification, where the channel impose
responses (CIRs) are adopted as training features. Moreover,
as a well known machine learning method, the artificial neural
network (ANN) has been adopted in [23] and trained by using
typical channel features, e.g., Rician K-factor and kurtosis,
to identify the LOS/NLOS channels, whereas [24] trains the
ANN by using de-noised channel state information (CSI).

Although a variety of channel quantities related to the
SISO (single-input-single-output) impulse response have been
exploited in the past for LOS identification (both for determin-
istic threshold methods and for machine learning), the antenna
arrays present in most modern wireless transceivers enable
researchers to also observe the angular channel information.
However, none of these above methods clearly address the
LOS identification problem by exploiting the angular informa-

tion in channels. The angular properties of the channels are
closely related to the geometry of the environment; thus, these
properties are likewise strongly associated with LOS/NLOS
conditions. Moreover, the time-varying channels, which are
usually considered in dynamic environments, are expected to
consist of the dynamic characteristics that may help to improve
the LOS identifications. Inspired by this, we propose in this
paper an angular information-based LOS identification method
for time-varying channels.

In our conference paper [25], we briefly introduced the idea
of using the static angular information to identify LOS/NLOS
in multiple-input multiple-output (MIMO) systems. In this
paper, we extend this and propose a time-varying angular
information-based LOS identification solution. We also eval-
uate how the following factors would affect the accuracy
of LOS/NLOS identification: i)machine learning methods for
training, ii) training features, and iii) training and validating
strategies. Through the experiments based on the channel
measurement data, it is found that the proposed time-varying
angular feature can significantly improve both the NLOS
identification accuracy and the robustness in different sce-
narios compared with the current studies, e.g., [23], [24].
Accordingly, the main contributions of this paper are as
follows:

• We use the time-varying angular properties of channels
to develop an intelligent LOS identification algorithm
that can improve identification accuracy. In particular,
we propose a LOS identification solution that uses the
power angular spectrum (PAS) as the identification ob-
ject instead of the directional features of the multipath
components (MPCs) as extracted by high-resolution pa-
rameter estimation (HRPE). Apparently, this will make
the localization applications and the data processing for
channels research more accurate;

• We investigate the feasibility of using various features
of the collected V2V measurement data for LOS identi-
fication; some of them have been shown to be effective
in the past. We demonstrate that using a single feature
does not give sufficient identification accuracy; hence,
we propose to apply machine learning to exploit multiple
channel features simultaneously.

• We investigate several machine learning methods for
the LOS identification. We evaluate the identification
performance of SVM, RF, and ANN based on extensive
V2V measurement data. These methods show different
performances when different training features and train-
ing strategies are used.

• Compared with the widely used K-fold cross-validation,
we use more practical training strategies to evaluate all
the identification solutions. The training and testing data
are collected from: i) different streets and ii) different
parts of each street. The former approach may be less
accurate to use; however, it might be more practical and
easier to implement.

The remainder of the paper is organized as follows. Section
II formulates the problem and introduces the framework of
the proposed approaches. Section III presents the feature
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extraction schemes. Section IV presents three methods that 
can be used to train the LOS/NLOS classifier. We present 
the V2V measurement campaign in section V and evaluate 
the proposed algorithm under various settings in section VI. 
Lastly, we conclude our findings in section VII.

II. PROBLEM DESCRIPTION

We aim to determine whether LOS (defined as an “optical” 
LOS between Tx and Rx) is present in the measured channel 
characteristics. As the TX and Rx move, the LOS might 
change with time as well.

We consider a wireless transmission system that can be used 
for communications or localizations, or both. In any case, 
the system transmits a known training signal (pilot signal, 
reference signal) with Fourier transform X(f); the frequency-
domain representation of the received signal is written as 
Y(f). Both X and Y are vectors of functions, representing 
the signals transmitted to/received from the different antenna 
array elements at the Tx and Rx, respectively. The channel is 
thus represented by a matrix transfer function (TF), H(f); 
its elements are the TFs between the various Tx and Rx 
antenna elements. This TF matrix is related to parameters of 
the multipath components (MPCs) [27]:

H(f) =
L∑

l=1

αl · c2(Ω2,l) · c1(Ω1,l)
T · e−j2πfτl , (1)

where L is the total number of multipath components (MPCs);
δ(·) is the Dirac delta function; and αl, τl denote the complex
amplitude and delay, respectively, associated with the lth MPC.
The vectors c2(Ω2,l), c1(Ω1,l) are the steering vectors on the
Rx and Tx sides, respectively, whereas the expression Ωi,l =
[cos(ϕi,l) sin(θi,l), sin(ϕi,l) sin(θi,l), cos(θi,l)], i = 1, 2 de-
termine directions/angles in a spherical coordinate system.
The term(ϕi,l, θi,l) ∈ [−π, π) × [0, π]. ϕ2,l, θ2,l, ϕ1,l, θ1,l is
the azimuth of arrival (AOA), elevation of arrival, azimuth
of departure (AOD), and elevation of departure of the lth
path, respectively. Lastly, (·)T is the transposition operation.
From Eq. (1), we can extract various channel parameters,
including power, delay, and the angle of the MPCs.1 Note
that the directly observable quantities are (vector) impulse
responses/TFs, while obtaining the MPC parameters requires
sophisticated and computationally expensive HRPE.

Various channel parameters can help researchers to dis-
criminate between LOS/NLOS conditions. A large number
of measurements have shown that the LOS and NLOS data
have different distributions of received power as function of
delay, an example of which is shown in Fig. 1. Although
we can see an obvious difference in the power delay profiles
(PDPs), it is hard to assign a simple quantitative rule that can
determine whether a LOS is present. Since Tx and Rx are
moving, we may consider a sequence of T (T ≥ 1) temporal
snapshots, denoted by [h(1),h(2), · · · ,h(T )]. This may provide
additional information, and thus make the LOS identification
more accurate.

1 Note that the elevation domain may not be considered in some cases,
e.g., the data are collected by a horizontal uniform linear array.
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Fig. 1. Example LOS and NLOS power delay profile data from the
measurement campaign described in Sec. V.

This work investigates how the channel features derived
from the MPC parameters (discussed further in section III)
impact the LOS identification. However, we do not focus only
on the impact of the MPC parameters; we also seek to compare
such impact to the fast estimation result, e.g., PAS, directly
obtained from the channel measurements (e.g., via Bartlett
beamforming).

Therefore, the main problems are: 1) how can we identify
the LOS and NLOS scenarios accurately based on the propaga-
tion channel features and 2) which channel features contribute
most to the LOS identification.

The proposed framework has two major stages: training and
testing. The training stage consists of the following steps:

1) We perform an extensive V2V measurement campaign
to collect training data; the details of the measurement
campaign are presented in section V. Accordingly, we can
obtain the CIR over time [h(1), h(2), · · · , h(T )]. Ground
truth labeling (LOS/NLOS) is obtained for each location
by visual inspection.

2) We then extract the channel features from the col-
lected data and use them as the training data X =
[x(1),x(2), · · · ,x(T )]. These are then further divided into
two categories: high-resolution estimation results Xh and
low-resolution estimation results Xl.

3) We generate the classifiers by using SVM, RF, and ANN,
respectively, based on the training data.

4) Lastly, we test and evaluate all the classifiers by using
different training and testing strategies. Specifically, we
use three different training and testing strategies to do
an actual evaluation of the algorithm. The details of the
evaluation are presented in section VI.

The general system architecture of this paper is shown in Fig.
2.

III. FEATURE EXTRACTION

This section presents the process of identifying the key
features of the collected CIRs and their use in identifying the
LOS/NLOS conditions. Specifically, the extracted features fall
under two categories: high-resolution estimation parameters
and low-resolution estimation results. In the former case,
we extract the channel parameters of the MPCs by using
HRPE algorithms such as the space-alternating generalized
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Fig. 2. System architecture of the proposed LOS/NLOS identification technique.

expectation-maximization (SAGE) [28] or joint maximum
likelihood estimation (RiMax) [29]. We will then apply the
latter to the results in Section V.

A. Channel Property Characterization

We extract from the measured (or simulated) propagation
channels those features that are expected to capture the salient
differences between the LOS and NLOS conditions for each
snapshot:
Maximum received power over delay samples
(max(|h(t)|2)): The LOS MPC generally contains more
power than the NLOS MPC. Therefore, the maximum
received power of each snapshot max(|h(t)|2) can be used to
identify LOS situations..
Kurtosis of the received power (K(t)): This can measure
the peakedness of the amplitude probability distribution and
is defined as the ratio between the fourth- and the second-order
moments of the received signal’s amplitude:

K(t) =
E[(|h(t)| − µ|h(t)|)

4]

E[(|h(t)| − µ|h(t)|)
2]2

=
E[(|h(t)| − µ|h(t)|)

4]

σ4
|h(t)|

(2)

where µ|h(t)| and σ|h(t)| are the mean and standard deviation
of |h(t)|. Accordingly, this can be expressed as:

µ|h(t)| =

∑L
l=1 ||h(tl)| − |h̄(t)||

L
(3)

σ|h(t)| =

√∑L
l=1(|h(tl)| − |h̄(t)|)2

L
. (4)

The amplitude of signals in the NLOS scenario are usually
less peaked than that in the LOS scenario; thus, the kurtosis
is generally larger in LOS conditions.
Skewness of the received power (S(t)): This can be used
to measure the asymmetry of the probability distribution. The
skewness of a Rayleigh distribution is generally larger than
that of a Rician distribution; in other words, the NLOS data
are usually more skewed than the LOS data. The skewness
can be calculated as:

S(t) =
E(|h(t)| − µ|h(t)|)

3

σ3
|h(t)|

(5)

where µ|h(t)| and σ|h(t)| are given in (3) and (4), respectively.
Rising time (∆τ (t)): This measures the time interval between
the strongest MPC and the first MPC:

∆τ (t) = argmax
τ

|h(t)| −min(τl) (6)

where l is the index of the MPCs. The first components in
NLOS scenarios might be attenuated by blocking objects or
strong diffractions; hence, the rising time in NLOS scenarios
is usually larger than that in LOS scenarios.
Root mean square-delay spread (τ (t)rms): This measures the
root mean square (RMS) delay spread of all MPCs in the
current snapshots:

τ (t)rms =

√√√√∑L
l=1(τ

(t)
l − τ

(t)
m )2|h(t)l )|2∑L

l=1 |h
(t)
l |2

(7)

where τ (t)m is the mean excess delay. Accordingly, this can be
expressed as:

τ (t)m =

∑L
l=1 τl|h

(t)
l |2∑L

l=1 |h
(t)
l |2

. (8)

The single strongest component (i.e., LOS) is absent in an
NLOS channel, which tends to lead to a lower concentration of
the power in delay. Hence, the RMS-delay spread is generally
higher in NLOS than in LOS scenarios.
Rician K-factor (K(t)

r ): The Rician K-factor is defined as
the ratio between the power of a (possible) dominant MPC
(typically the LOS) and the power in the remaining MPCs.
Although a nonzero K-factor also exists in many NLOS
situations, theoretical and empirical studies have shown that
there is a correlation between the magnitude of the K-factor
and the presence of LOS conditions. The K-factor can be
roughly approximated as:

K(t)
r =

(|h(t)|max)
2

2σ2
|h(t)|

(9)

where |h(t)|max represents the amplitude of the main peak in
the tth snapshot and σ|h(t)| is the variance of amplitude.

The features presented above are the indicators for
LOS/NLOS identification that have been widely used in the
literature. In this paper, we further study the static and tempo-
ral angular features to identify the NLOS/LOS scenarios more
accurately.
Angular difference (∆λ(t)l ): This measures the difference
between the AOD (ϕ1) and AOA (ϕ2) of the strongest MPC in
each snapshot. The strongest MPC in the LOS scenario should
be the LOS MPC. In a LOS MPC, the signal transmitted
from the Tx directly propagates to the Rx; thus, the angular
difference between the AOD and AOA should remain constant
(unless the cars turn at different times, or two oncoming cars
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pass each other). On the other hand, the angular difference of 
an NLOS MPC may change instantly, e.g., due to dynamic 
reflectors in V2V channels or because the movement of Tx 
and Rx with respect to static reflectors changes the AOD and 
AOA. For the strongest MPC l in the tth snapshot, the angular 
difference is defined as:

∆λ
(t)
l =

∣∣∣exp(iϕ(t)1,l,max)− exp(iϕ
(t)
2,l,max)

∣∣∣ . (10)

Angular spread of departure/arrival (λ(t)ASD/λ
(t)
ASA): This

measures the spreads of AOA and AOD of all MPCs in the
current snapshot. They can be calculated as [30]:

λ
(t)
ASD/ASA =

√√√√∑L
l=1 | exp (iϕ

(t)
1/2,l)− µ

(t)
ϕ1/2

|2|h(t)l |2∑L
l=1 |h

(t)
l |2

(11)

where the µ
(t)
ϕ1/2

is the mean direction of the PAS. This, in
turn, can be calculated as:

µ
(t)
ϕ1/2

=

∑L
l=1 exp (iϕ

(t)
1/2,l)|h

(t)
l |2∑L

l=1 |h
(t)
l |2

. (12)

The angle spread of LOS scenarios is generally smaller than
that of NLOS scenarios.

Angular variant of departure/arrival (∆ψϕ1,(t),∆ψϕ2,(t)):
This measures the variation of the AOD and AOA
of the strongest path at a certain time window. As-
suming the time interval is ∆t during the snapshot-
s of {h(t−∆t), h(t−∆t−1), · · · , h(t)}, the AOD/AOA of the
strongest path in each snapshot can be expressed as:

V
(t)
ϕ1/2

= [ϕ
(t−∆t)
1/2 , ϕ

(t−∆t−1)
1/2 , · · · , ϕ(t)1/2]

T (13)

which can be rewritten as:

V
(t)
ϕ1/2

=


r sinϕ

(t−∆t)
1/2 , r cosϕ

(t−∆t)
1/2

...
...

r sinϕ
(t)
1/2 , r cosϕ

(t)
1/2

 = [v1,v2] .

(14)

In this case, we use the eigenvalue of the covariance matrix
of the Vϕ1/2

to validate the dispersion of the AOA/AOD of
the strongest path:

∆ψϕ1/2,(t) =
∑

eig

([
cov(v1,v1) cov(v1,v2)
cov(v2,v1) cov(v2,v2)

])
.

(15)

In summary, the input (feature) vector of the tth snapshot
can be expressed as:

xh,(t) = {max (|h(t)|2),K(t), S(t),∆τ (t), τ (t)rms,K
(t)
r ,

∆λ
(t)
l , λ

(t)
ASD, λ

(t)
ASA,∆ψ

ϕ1,(t),∆ψϕ2,(t)}. (16)

Fig. 3 shows an example of kurtosis and the AOA obtained
from our V2V channel measurements (see Section V). We
can see from the figure that both these characteristics show
different distributions in LOS and NLOS scenarios. However,
there is no existing threshold that can be used to separate the
LOS and NLOS data perfectly.
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Fig. 3. Distribution of factors in LOS and NLOS, respectively. (a) Kurtosis
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B. Power Angle Spectrum Extraction

Using the above angular features based on MPCs requires
HRPE, which is computationally expensive. Instead, we can
use the PAS as a low-resolution estimation training feature
for comparison. The PAS cannot provide actual MPCs albeit
it still contains angular information that can be used for further
processing [31]. The PAS can be obtained by using the Bartlett
beamformer [32], which is expressed as:

xl,(t)(ϕ1, ϕ2) =
[c2(Ω2,l)

⊗
c1(Ω1,l)]

HR[c2(Ω2,l)
⊗

c1(Ω1,l)]

[c2(Ω2,l)
⊗

c1(Ω1,l)]H [c2(Ω2,l)
⊗

c1(Ω1,l)]
(17)

where the (
⊗

) denotes the Kronecker product and R is the
spatial covariance matrix. The latter is defined as:

R = E{vec(H(f))vec(H(f))H} (18)

where the vec(·) operator stacks the columns of a matrix into
a vector. The advantage of the PAS is that it is simple to
implement; its drawback is its low resolution. Fig. 4 gives
two examples of the estimated PAS in (a) LOS scenario and
(b) NLOS scenario, respectively. The power distributions of
the PASs in the LOS and NLOS scenarios obviously show
different characteristics, and this can be used for identification.

IV. MACHINE LEARNING-BASED LOS/NLOS
IDENTIFICATION

We briefly present in this section the machine learning
methods used to generate the LOS/NLOS classifier. Based on
the set of features extracted from the CIRs, the task here is
to decide whether a given set of CIR samples corresponds to
LOS or NLOS conditions. We use three different generation
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(a)

(b)

Fig. 4. Examples of the estimated PASs in the (a) LOS and (b) NLOS
scenarios, respectively.

methods, namely, SVM, RF, and ANN; these methods are
widely used to address various classification problems.

A. Least Square Support Vector Machine

The SVM is a supervised learning method that is mostly
used for classification, especially for binary classification
problems [33]. The SVM has been widely used for classi-
fication due to its robustness and because it requires only
a few predefined parameters. Specifically, we use the least
squares SVM (LS-SVM) [34], which uses an especially simple
optimization to learn the weights in the SVM.

A linear classifier can be expressed as a function of X ⇒
{−1,+1} and has the following form:

L(t)(x) = sign[wTφ(x(t)) + w0] (19)

where the sign is the signum function and φ(x) is the
eigenvector of feature x after projection (described in more
detail below). Meanwhile, w and w0 are the weight parameters
learned from the training data {x(t),L(t)}Tt=1, where x(t) ∈ X
and the input labels L(t) ∈ {−1,+1}. In this case, the LS-
SVM separates two classes {−1,+1} by determining the
separating hyperplane that maximizes the margin between the
two classes. Therefore, we obtain the LS-SVM classifier by

solving the following optimization problem:

arg min
w,w0,e,σ2

1

2
||w||2 + c

1

2

N∑
j=1

(e(t))2 (20)

s.t. L(t)[wTφ(x(t)) + w0] = 1− e(t), ∀t (21)

where c is the weighting factor that controls the trade-off
between training error and model complexity. Fig. 3 shows that
the LOS/NLOS scenario are not linearly separable. Consider-
ing this, we use a Gaussian radial basis function [35], instead
of a linear mapping function, to classify the LOS/NLOS
scenarios better:

k(x,x(t)) = φ(x)T · φ(x(t)) = exp

[
−||x− x(t)||22

2σ2

]
(22)

where σ2 is the hyper-parameter learned from the training data
using (20). The optimization problem (20) has already been
established to be a linear programming problem [34]. This
can be solved by using its Lagrangian dual and Karush-Kuhn-
Tucker conditions in order to obtain the prediction of the LS-
SVM as:

L(x) = sign

[
T∑

t=1

α(t)Ljk(x,x
(t)) + w0

]
(23)

where α(t) is the Lagrange multiplier.
We then train an LS-SVM classifier to distinguish between

LOS and NLOS scenarios using the input x(t) and the corre-
sponding labels L(t) = −1 and +1 for the NLOS and LOS
data, respectively.

B. Random Forest

The RF is a kind of ensemble learning method [36] con-
sisting of multiple different decision trees that use randomly
selected features. The RF arrives at its final decision after all
the decision trees have voted on the decision. In this case,
the RF classifier usually has good robustness to overfitting.
Likewise, it is widely accepted that RF provides a superior
classification performance for a moderate complexity with
relatively large feature size. Specifically, we use the clas-
sification and regression-RF (CART-RF) [37] in this study.
Each decision tree in the CART-RF divides the input samples
based on the Gini index of the input feature instead of the
information entropy. Accordingly, this is defined as:

Gini(x) =

N∑
L=1

pL(1− pL) = 1−
N∑

L=1

p2L (24)

where pL denotes the ratio of the samples x that have the
label L and the total data X, and N is the number of data
categories. Each sample is either LOS or NLOS; thus, N is 2
in our case. The Gini index of a given feature x of the input
data X is calculated as:

Gini(X, x) =
|Xx<x′ |
|X|

Gini(Xx<x′
)

+
|Xx>x′ |
|X|

Gini(Xx>x′
), x ∈ x (25)
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where x′ is the threshold used to separate the data X. We can 
obtain the optimal classification of feature x∗ by minimizing 
the Gini index of x as follows:

x∗ = arg min
x∈x,x′

Gini(X, x). (26)

C. Artificial Neural Network

ANN is an important and widely used machine learning
tool, which was developed to solve classification, recognition,
and regression problems [38]. A neural network is comprised
of a number of basic elements called neurons, in which the
input is transformed through linear mapping followed by a
nonlinear activation. To train the network, we can apply a
learning algorithm to the network in order to update the map-
ping parameters in the neurons until the output of the network
is consistent with the target output. Specifically, we can train
a neural network to learn a particular output by applying the
learning process to a group of known samples with labels; we
can then predict the output of the network using the validation
samples. This is a widely investigated approach to learning a
pattern that reveals a nonlinear relationship between the known
input (measurement data) and target output (LOS or NLOS
label). ANNs have good robustness in terms of learning ability
and have a very flexible network design; thus, several studies
have used ANNs for LOS/NLOS identification [23], [24].

In this paper, we adopt a neural network with feed-forward
architecture and an error-back-propagation-based learning al-
gorithm. This kind of neural network usually consists of an
input layer, one or several hidden layers, and an output layer.
The term “feed-forward” implies that the neural network has
a topological structure in which only the links between two
neighboring layers exist, i.e., the input layer can only be
connected to the hidden layer while the hidden layer can be
connected only to the output layer. It is noteworthy that, the
conducted network structure can affect the performance of
the identification: a complicated and highly custom network
generally performs better but requires extensive experiments
and adjustments, which is considered to be outside the scope
of this paper. Consequently, we use a regular fullyconnected
layer-based deep learning network in our experiments. In our
case, we use the extracted channel features Xh,(t) and the PAS
Xl,(t) as the input data, respectively. The activation function
we use is:

f(x) =

{
x, x ≥ 0;
0, x < 0.

(27)

The parameters of the network, e.g., the number of hidden
layers and the number of nodes in each layer, are crucial to
the performance of the neural network, which is usually set
empirically. In our case, we first select the approximate range
of the network parameters based on the scale of input features
and on the output labels; then, we further determine the actual
parameters experimentally. Fig. 5 shows the final network ar-
chitecture, in which five hidden layers with {128, 64, 32, 16, 8}
nodes are used. Note that the SoftMax function is conducted
after the hidden layers such that the output of hidden layers
can be mapped into the output label.

TABLE I
PARAMETERS AND SYSTEM SETUP OF THE MEASUREMENT CAMPAIGN

Parameter Value
Carrier frequency 5.9 Ghz

Bandwidth 15 Mhz
Transmit power 26 dBm

Number of Tx antennas 8
Number of Rx antennas 8

Sampling rate 20 MS/s

V. MEASUREMENT CAMPAIGN

This section details the measurement campaign and param-
eter extraction procedure that we used in this study to generate
the channel characteristics, and accordingly form the basis for
the evaluation of our proposed algorithm. Likewise, this sec-
tion discusses the data collection procedure for developing the
different training and testing strategies (presented in section
VI).

A. System Settings

We conducted the V2V measurement campaign using
the self-built real-time MIMO channel sounder described in
[39]. The sounder includes a pair of National Instrument-
universal software radio peripheral (NI-USRP) reconfigurable
input/output (RIO) devices that function as the main RF
transceivers, two GPS-disciplined rubidium clocks that serve
as the synchronization units, and a pair of eight-element
uniform circular arrays that are connected to the USRPs via
electronic switches. Table I provides the key parameters of the
setup whereas Figs. 6(a) and (b) illustrate the measurement
cars and antenna arrays used in this study.

We placed 360◦ cameras next to the Tx and Rx to record
the environment during the whole measurement and accurately
determine the “ground truth”, i.e., whether LOS or NLOS is
valid at a particular time. The data gathered are used for the
training and for the performance assessment. Fig. 6(c) gives a
sample snapshot of the video recorded from the Rx side. The
details of the sounder and the measurement campaign can be
found in [39], [40].

From the measured transfer function matrices, we extract,
via RiMax, the parameters of the MPCs, which form the
basis of most of the computations in Sec. VI. More detailed
descriptions about the extraction methodology can be found
in [40].

B. Route selection

We conducted the measurements on the campus of the
University of Southern California, USA, and on public roads
near the campus. The blue dots in Fig. 7 represent the positions
of the Tx whereas the yellow stars are those of the Rx.

We then conduct different training and testing strategies
to evaluate the algorithm more practically; the training and
testing data are collected separately. In this case, the red and
blue lines in Fig. 7 represent the training and testing data,
respectively. Specifically, both the training and testing data
contain the LOS and NLOS scenarios.
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Fig. 5. Illustration of the network architecture.

(a) (b)

(c)

Fig. 6. Antenna arrays and measurement environments. (a) Antenna array on the Tx side. (b) Antenna array on the Rx side. (c) An example of the video
shot on the RX side during the measurements.

VI. EVALUATION

In this section, we present the evaluation results of the
proposed approaches. First, we discuss the database setup, and
then elaborate how the selection of different channel features
impacts the results. Furthermore, we illustrate and analyze
how the the different testing and training strategies affect the
results.

A. Database Setup

We apply the V2V measurement data to our proposed LOS
identification algorithms. The NLOS situations might arise
as moving vehicles, pedestrians, buildings, and other large
structures may block the LOS connection. Although the causes
of the NLOS condition are the same, the features of the NLOS
channels may still be different because the characteristics of
the environment where the channel occurs are also different.
Noise in the received signal makes the identification even less
accurate.

Therefore, we have two categories of evaluation: i) impact
of feature selection to compare the proposed identification
algorithms (we use static and time-varying channel features
in this case) with the conventional solutions, and ii) impact
of data selection to evaluate the different solutions by using
different training and testing strategies.

B. Impact of Feature Selection

In the past, researchers used the conventional features,
e.g., received power, rising time, and kurtosis, to identify
LOS/NLOS channels since their features are usually different
[23], [26]. In dynamic V2V channels, each channel feature
may contribute differently to the LOS/NLOS identification at
a different position along the street.

Fig. 8 gives the probability distribution function (PDF)
of the different channel features that were extracted from
the measurement data. We can see from the figure that the
LOS and NLOS channels indeed show different probability
distributions of these features. Most of the features, however,
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Fig. 7. Illustration of the routes taken during the V2V measurement campaigns. The blue dots and yellow stars represent the positions of the Tx and Rx,
respectively. The red and blue lines mark the training and testing data, respectively.

still show some overlapping areas, which may cause the
LOS/NLOS to be identified inaccurately, e.g., the solutions in
[23] and [26]. Moreover, Figs. 8(g)–(k) show that the angular
channel features are more disparate than the other features,
and that the PDFs of angular variant features have minimum
overlapping area. To evaluate the identification performance
more accurately, we conduct a widely used K-fold cross-
validation [41]:

1) Each of the databases Xh and Xl are divided into K
disjoint sets, X = {X1∪X2∪· · ·∪XK}, with Xi∩Xj =
Ø, for i ̸= j.

2) We conduct the training based on the set X \ Xi, and
then use the set Xi to validate.

3) We then revalidate the results for each i = 1, · · · ,K. In
our case, we set K = 10 while considering the trade-off
between computational complexity and accuracy.

As introduced in the introduction, the most widely used
LOS identification method simply uses a fixed threshold of a
key parameter of channels, e.g., the Rician K-factor, to classify
the measured data. To fully compared to the conventional
solutions, we validate the identification performance of using
the deterministic threshold of each feature individually. As
shown in Fig. 9, the different features indeed show different
identification accuracy; both the features of maximum power
and angular variant of departure achieve 10% identification
error rates; the widely used Rician K-factor doesn’t achieve
the best performance, probably because the Rician K-factor
threshold between LOS and NLOS data may change signif-
icantly in the dynamic environment. Note that we use the
error rate here to evaluate the identification accuracy, which is
calculated by the ratio of the number of incorrectly identified
samples over the total number of samples.

To evaluate the effect of selecting different features on the
LOS identification, we generate different training sets that

consist of different groups of features. Table II shows that each
set contains the features tick-marked in the table. The channel
features are divided into conventional features and angular-
based features; the angular-based features are further divided
into static features (∆λl, λASD, and λASA) and temporal
features (∆ψϕ1 and ∆ψϕ2 ). We use all the sets in Table II
and the PAS data for the training. Thereafter, we implement
SVM, RF, and ANN, respectively, for comparison.

Fig. 10 shows the identification error rate of the different
classifiers that were generated from the training sets listed in
Table II and from the PAS. Specifically, we implement SVM,
RF, and ANN for comparison.

Compared to the conventional solutions without machine
learning in Fig. 9, it can be found from Fig. 10 that all the
machine learning-based solutions are able to achieve better
identification accuracy. We can easily see that the selection of
training features, as compared to the selection of a machine
learning method, has greater effect on identification accuracy.
Likewise, we can see in the figure that the RF-based solution
mostly outperforms the others in terms of the solutions trained
by the extracted features. On the other hand, the ANN has
the best performance in the solutions trained by the PAS. This
indicates that the RF-based solution is better in identifying the
difference between the features extracted from the LOS and
NLOS data whereas ANN is better in learning the implicit
characteristic from the un-extracted data.

Furthermore, the sets consisting of angular features (sets
2–6) are more accurate than the conventional features (set 1),
which are used in [23] and [26], in identifying the LOS/NLOS.
This indicates that the angular features have more contribution
to the identification process. Specifically, the time-varying
angular feature-based solutions (sets 3–6) outperform the static
angular feature-based solution (set 2). This indicates that the
temporal feature is an important characteristic of the LOS
identification in the time-varying system. Set 4 validates the
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Fig. 8. Probability distribution function of the different extracted characteristics. (a) Maximum power (in dB), (b) Kurtosis, (c) Skewness, (d) Rising time,
(e) RMS delay spread, (f) Rician K-factor, (g) Angular distance, (h) AOA, (i) AOD, (j) Angular variant of arrival, and (k) Angular variant of departure.

algorithms trained by using the angular features only; it
also shows good accuracy. Moreover, the RF-based solution
performs fairly well as trained by the time-varying angular
features only.

C. Impact of Data Selection
The validating data in the K-fold cross-validation are iter-

atively selected from the total data. In practice, however, it is
too expensive to measure the channels of all the environments
in the city and then label them manually as the training data.
Thus, it is more practical to measure some typical scenarios
and then generate the classifier for other similar scenarios. We
then use different training and testing strategies to do an actual
validation of the algorithms as follows:

• Case 1: Conventional K-fold cross validation for training
and testing

• Case 2: Different parts of the street for training and
testing, respectively

• Case 3: Different streets for training and testing, respec-
tively, as shown in Fig. 7.

Case 1 is the most widely used training strategy for the
learning-based classifier [41]. Case 2 is a more practical
situation since it requires measuring only a part of each street,
although the correlation between the training data and testing
data is weaker here than that in case 1. Case 3 is the most
practical solution since we only need to measure the typical
streets and then validate for all the other streets. In this case,
we select the data collected from some streets on campus
and some public streets for training. We subsequently validate
the algorithms based on the data collected from the totally
different streets as shown in Fig. 7. Except for case 1 using
K-fold cross-validation, Table III details the validation layout
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TABLE II
FEATURE SELECTION FOR DIFFERENT TRAINING SETS

Training set

Channel features
Conventional feature Angular feature

Static Time-varying
max (|h|2) K S ∆τ τrms Kr ∆λl λASD λASA ∆ψϕ1 ∆ψϕ2

Set 1
√ √ √ √ √ √

Set 2
√ √ √ √ √ √ √ √ √

Set 3
√ √ √ √ √ √ √ √

Set 4
√ √ √ √ √

Set 5
√ √

Set 6
√ √ √ √ √ √ √ √ √ √ √

Fig. 10. Identification error rate of the different classifiers that were generated using the training sets listed in Table II and the PAS. Specifically, SVM, RF,
and ANN are implemented for comparison.

TABLE III
VALIDATION LAYOUT PARAMETERS

Data sets Number of data sets
Total LOS/NLOS data sets 1 5295 / 1 3581

Training data for case 2 8 077 / 7 549
Validating data for case 2 7 218 / 6 032
Training data for case 3 7 044 / 5 838

Validating data for case 3 8 251 / 7 743

parameters of cases 2 and 3.
Fig. 11 gives the identification error rate of the different

classifiers that were trained using: i) the conventional features
(set 1), ii) the angular-based features (set 6), and iii) the PAS.
We investigate the impact of data selection on the identification
accuracy by comparing the performances of cases 1, 2, and 3.
Similarly, we implement SVM, RF, and ANN for comparison.

Similar to the results of the experiments discussed in section
VI-B, the selection of training features has the most influence

on identification accuracy. Meanwhile, the performance com-
parison among the different cases shows that all the approaches
using case 1 training strategies perform the best whereas the
approaches using case 3 have the worst performance. This
aspect follows the intuition since the training and validating
data in case 3 have the weakest correlation.

We have previously mentioned that both cases 2 and 3 are
using totally different data for training and validation. Case
2 still collects training and validating data from the same
street whereas case 3 collects them from entirely different
streets. In this case, the approaches trained by conventional
features show performance differences between cases 2 and
3 that are significantly higher than when trained by angular-
based features (both set 6- and PAS-based). This indicates that
the angular-based features can improve the robustness of the
LOS/NLOS identification even if the validating data change.

Moreover, the ANN-based identification algorithm can still
achieve relatively high identification accuracy albeit it is
trained only by the PAS. Specifically, in all three cases,
the ANN-based solution trained by the PAS performs better
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Fig. 11. Identification error rates of the different classifiers that were trained using conventional features (set 1), angular-based features (set 6), and the
PAS. The impact of data selection is investigated by comparing the performances of cases 1, 2, and 3. Specifically, SVM, RF, and ANN are implemented for
comparison.

Fig. 9. Identification error rate when deploying the conventional LOS
identification solutions, i.e., using a fixed threshold of channel parameters
to classify the measured data.

than those trained by conventional extracted features. This is
because the PAS data actually contain the un-extracted angular
characteristic, which needs to be recognized and can contribute
to the identification process. Note that when we compare the
performances using the PAS on a dB scale and linear scale
for training, the linear scale shows better results. On the other
hand, the identification error obtained from using extracted
angular characteristics is less than half that obtained from
using the PAS, albeit at the price of higher computational
complexity.

From the comparison between the approaches using conven-
tional features, i.e., Set 1, it can be found that the SVM-based

identification algorithm achieves relatively better performance
in both Case 1 and Case 3, whereas the RF-based and ANN-
based solutions show similar performance; but the RF-based
identification algorithm shows better performance in Case 2
than the other two. Meanwhile, when the angular characteristic
is exploited, i.e., Set 2, the RF-based identification algorithm
achieves the best performance in all Cases. This indicates that
with the help of angular characteristics, the RF algorithm has
more robustness than SVM and ANN in the LOS identification
problem. Specifically, in the experiment based on PAS set, the
RF-based identification even achieves better performance than
the ANN-based solution in Case 1, whereas the ANN-based
solution still achieves the best performance in the practical
cases, i.e., Cases 2 and 3.

The experiment in Fig. 11 shows that the performances of
all approaches decrease in a more practical scenario. However,
the RF-based approach trained by angular features performs
the best whereas the ANN-based approach trained by PAS can
provide fairly good accuracy with relatively lower complexity.

In addition, there are several different deep learning meth-
ods, e.g., [42]–[45]. Specifically, the convolutional neural
network (CNN) shows good performance in feature extraction
for channel estimation [43]–[45]. For the training data that
consists of spatial features, e.g., the PAS, the CNN may further
improve the LOS identification accuracy. To limit the scope
of the paper, this work focuses on designing efficient and ro-
bust training features for LOS identification and investigating
the impact of using different machine learning methods and
different training/testing strategies, but further investigation on
PAS-based LOS identification by using CNN is an interesting
topic for the future.

D. Summary
To sum up, the experiments give us the following conclu-

sions:
• The selection of the training features is the most crucial

factor in the performance of LOS identification. This
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is confirmed by all the experiments. This gives the
intuition that the design of training features should be
the major concern for the LOS identification rather than
the selection of machine learning methods.

• The angular features can significantly improve the perfor-
mance of LOS identification. The exploitation of angular
characteristics can significantly increase the LOS identi-
fication accuracy no matter which other characteristics
it is combined with. This observation also follows the
insight that the geometry relationship of Tx/Rx and the
environment has a strong connection with the LOS/NLOS
propagation process.

• The ANN can well recognize the implicit characteristic
of the PAS and can identify the LOS/NLOS condi-
tions with fair accuracy while using a relatively lower
computational complexity. Unlike the extracted channel
characteristics, the PAS contains the channel features
that are submerged in “noise information”, i.e., cannot
be directly used for LOS identification. Benefitting from
feature mining, the ANN can automatically extract the
features that contribute to LOS identification, and thus
achieves the best performance when the method is only
trained by PAS. Considering the time-consuming channel
feature extraction process, the ANN-based identification
trained by PAS can be an alternative and fast solution for
LOS identification.

• The RF-based LOS/NLOS identification gives the best
performance based on the extracted training features. It
can be found from all the experiments, the RF-based
identification shows better robustness, especially when
the training features contains the angular channel char-
acteristic. This may because the RF method is better in-
learning the artificial-extracted channel feature, i.e., the
angular channel characteristic, compared with SVM and
ANN in our case.

• Most of the solutions perform worse when totally d-
ifferent training and validating data are used. Howev-
er, the angular features can improve the robustness of
the LOS/NLOS identification to this effect. From the
comparison among the three cases we conducted, the
angular channel features are able to narrow the gap of
identification performance in different cases.

VII. CONCLUSION

In this paper, we have proposed two novel algorithms to
address the problem of LOS identification. They are based
on channel features extracted from measured MIMO impulse
responses either through HRPE or low-resolution (Fourier)
estimation. According to the evaluations based on extensive
V2V measurement data, the algorithms can accurately and
effectively identify LOS/NLOS conditions. Furthermore, we
have compared the impact of the selection of training methods,
i.e., SVM, RF, ANN, on the identification accuracy. The
RF shows the best performance as trained by the extracted
temporal features. On the other hand, the ANN achieves the
best identification accuracy as trained by the PAS data. In
addition, we have evaluated the algorithms by using different

training and validating strategies. The proposed algorithms
show good robustness to environmental changes, indicating
that application without exhaustive training data acquisition
drives might be feasible. All experiments are conducted by
using the fullyconnected layer-based network structure, a more
accurate ANN structure will be investigated in future work.
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